

Spectral Forest Presentation 2

ME 476C Section 02

Team: Tyler Lerew, Torrey King, & Derrick Doan

Project Description

Build a robust spectrometer housing to protect the internal components of the spectrometer. The range of wavelengths of light that the client is interested in is 350-1000 nm, this product could help change the trajectory of forests research and conservation efforts.

Insights into plant health, leaf makeup and thickness, water concentrations in soil and in trees, temperature differences due to water conspiring up the tree, this data will be put into prediction models to analyze the forests' health

The unit will be placed in a specific understory position to continuously monitor a location. Later the device will be attached to a drone and can analyze the forest from above. The lab application is to view the optical and energy properties of semiconductors like energy transfer and light reflection and absorption

Use single aperture with or without mirrors to direct the light into the linear array being used to decipher the light and collect the data

Sponsors: Alexander Shenkin (Assistant Research Professor) and Carlo da Cunha (Assistant Professor) - SICCS

Black Box

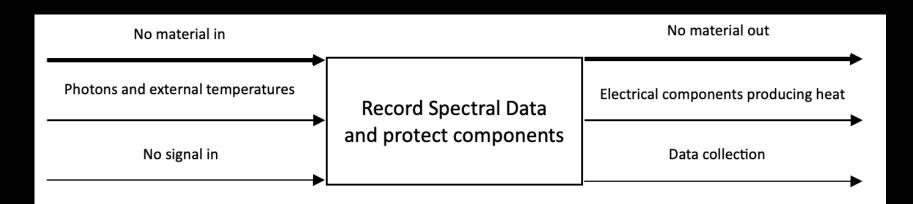


Figure 1: Black Box Model

Functional Model Decomposition

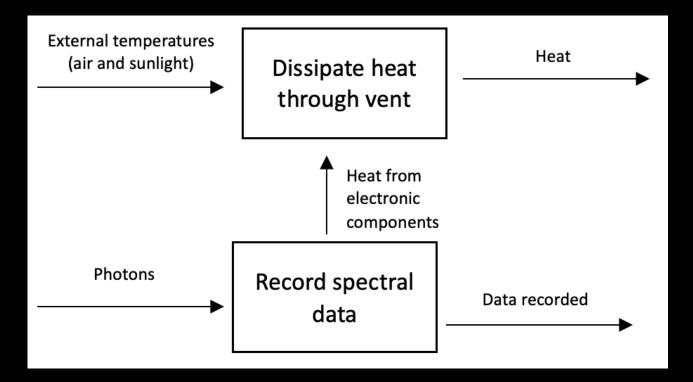
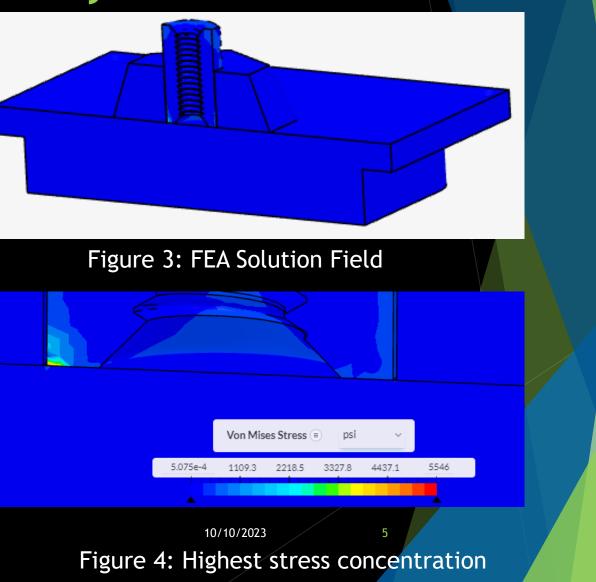



Figure 2: Functional model

Engineering Calculations - Tyler

- FEA on camera mount attached to housing
- Purpose: design the housing to easily be attached to a standard camera mount and it will not fail when attached
- thrust = thrust-to-weight-ratio × total drone weight
- Aurelia X4 Standard
 - Payload up to 3.3 lbm
 - Total weight of drone with battery and housing attached = 10.68 lbs
 - Thrust to weight ratio = 2:1
 - Thrust = 21.36 lbf
 - Strength of sleeve nut is 105 x 10³ psi

Tyler, Spectral Forest, F23toSp24_10

Engineering Calculations - Torrey

Gore weather-resistant vent: 4000 ml/minute at 70 mbar pressure

Mass flow rate equation

Ideal gas law

Torrey, Spectral Forest, F23toSp24_10

Engineering Calculations - Derrick

Cosine Correction - Making light spectrum spectrally flat across all arrays (Ex: eyes)

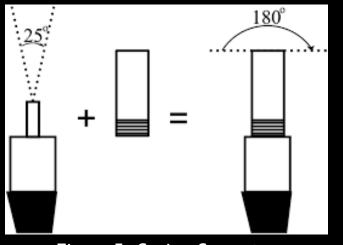
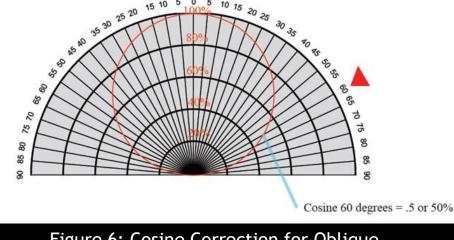



Figure 5: Cosine Corrector Example

Lambert's Law: $L_{\theta} = L_0 \times \cos \theta$

15 10 5 0 5 10 15 20

Figure 6: Cosine Correction for Oblique Angle Light

Light Intensity at Angle θ = Light Intensity on Reflected Surface x Cosine of Oblique Angle θ

Derrick, Spectral Forest, F23toSp24_10

10/10/2023

Concept Generations: Morph Matrix

- Morph matrix was used to generate concepts by researching the most common practices and ranking them based on feasibility for application to our project
- Green is the most relevant option followed by yellow and orange

Table 1: Morphological Matrix

worph wathx									
Subsystem	Design 1	Design 2	Design 3	Design 4	Design 5	Design 6			
Optics	Linear array	fiber optic	camera	Linear array	Linear array	Linear array			
Shape	Cylinder	Rectangular prism	Cone	Rectangular prism	Rectangular prism	Rectangular prism			
Cosine corrector	silica/quarts glass	PTFE film	Microscope slide	silica/quarts glass	PTFE film	silica/quarts glass			
Pressure equalizer	latex balloon	Breather vent	hole	inverted balloon	Breather vent	Breather vent			
O-ring	Silicone	FKM	FFKM	FKM	FFKM	Silicone			
Material	ABS	Onyx	Polycarbonate	Onyx	Onyx	Onyx			
Insulation	yes	no	yes	yes	yes	no			
Mirrors	yes	no	yes	no	yes	no			
Terroy Coestral Ferent F22teCo21 10				10/10/2023	8				

Morph Matrix

Torrey, Spectral Forest, F23toSp24_10

0/2023

Concept Generation

Table 2: Concepts Advantages and Disadvantages

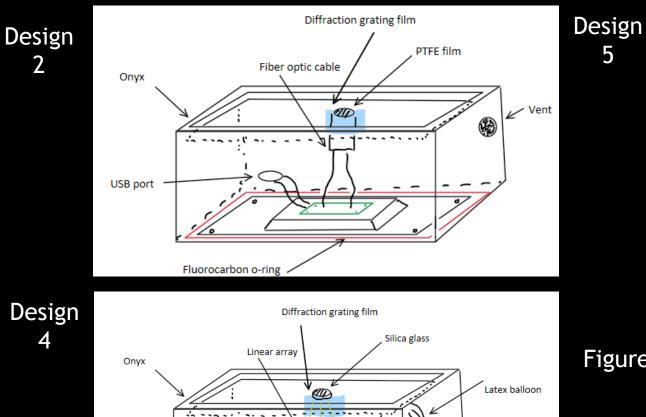
Concept advantages and disadvantages								
Subsystem	Most relevant	Advantages	Disadvantages					
Optics	Linear Array	Cheap, can collect data in the range of wavelength that we are interested in	Must direct the light into the array					
Shape	Rectangular Prism	Easy to 3d print, easier to mount to a drone	Difficult to 3d print and difficult to mount to a drone					
Cosine corrector	Silica/quarts glass	Large range of transmissibility, chemically and thermally resistant	None					
Pressure equalizer	Breather vent	Can withstand pressures at 2m under water	Slowly equalizes pressures					
O-ring	FFKM	Resistant to acids, solvents, extreme temperatures, water, weather, and sunlight	Expensive					
Material	Onyx	Smooth surface finish, strong, 3d printable	May not be waterproof, needs to be tested					
Insulation	None	Keeps electronics from shifting and at consistent temperature	Components are inaccessible					
Mirrors	None	Ensure the light is perfectly aligned with the array	Hard to fasten and keep in the exact same place					

Torrey, Spectral Forest, F23toSp24_10

Concept Evaluation: Pugh Chart

Table 3: Pugh Chart **Pugh Chart** Criteria Design 3 Design 5 Design 6 Design 1 Design 2 Design 4 Durable D = = = Vents ensure semi-constant conditions Α + = + + = Unit is sealed = = = Ease of access Т + -= + Reliable + + = UV resistant U = + = = Affordable Μ = S+ 2 2 2 2 1 S-5 0 4 S= 0 4 1 6 4

The team will move forward with Designs 2, 4, & 5


Tyler, Spectral Forest, F23toSp24_10


Concept Evaluation: Decision matrix

Ribbon cable

Insulation

5

Figures 7, 8 & 9: Top 3 Design Alternatives

10/10/2023

Fluorocarbon o-ring

USB port

Concept Evaluation: Decision matrix

Design #:	-	Design # 2		Design # 4		Design # 5	
Criteria	Weight	Unweighted	Weight	Unweighted	Weight	Unweighted	Weight
Durable	0.15	85	12.75	90	13.5	80	12
Vents ensure semi-constant conditions	0.15	90	13.5	100	15	90	13.5
Unit is sealed	0.2	95	19	95	19	95	19
Ease of access	0.05	100	5	50	2.5	50	2.5
Reliable	0.2	95	19	100	20	90	18
UV resistant	0.2	90	18	90	18	90	18
Affordable	0.05	0	0	100	5	90	4.5
Total	1	Sum	87.25	Sum	93	Sum	87.5
Relative Rank	N/A	3		1		2	

Table 4: Decision Matrix

Concept Evaluation

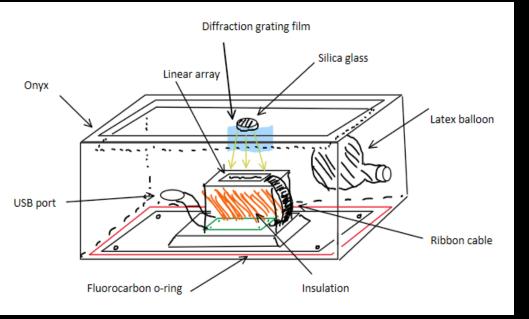


Figure 8 :Design #4

- No mirrors, latex balloon may be an issue if the quality is not high enough
- Silica glass has a higher transmissibility than PTFE
- Insulation may be removed if ribbon cables cannot be obtained

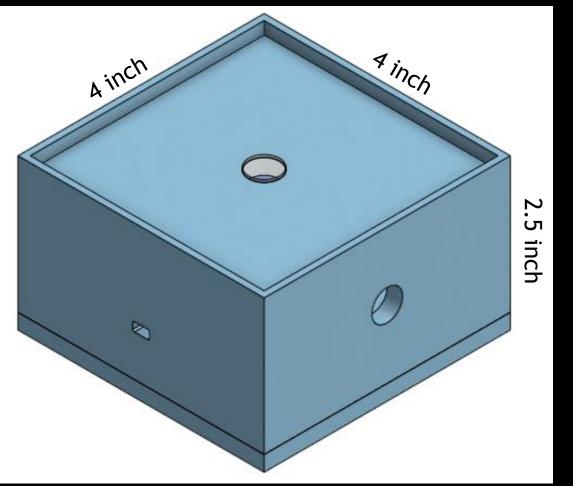



Figure 9 : Design #5

- Contains mirrors, which are difficult to deal with when attached to a drone
- PTFE comes in a thin film, will be an issue if it gets punctured

Concept Evaluation: CAD

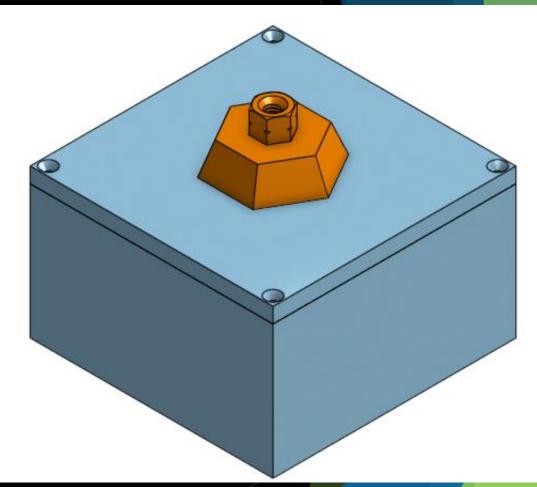
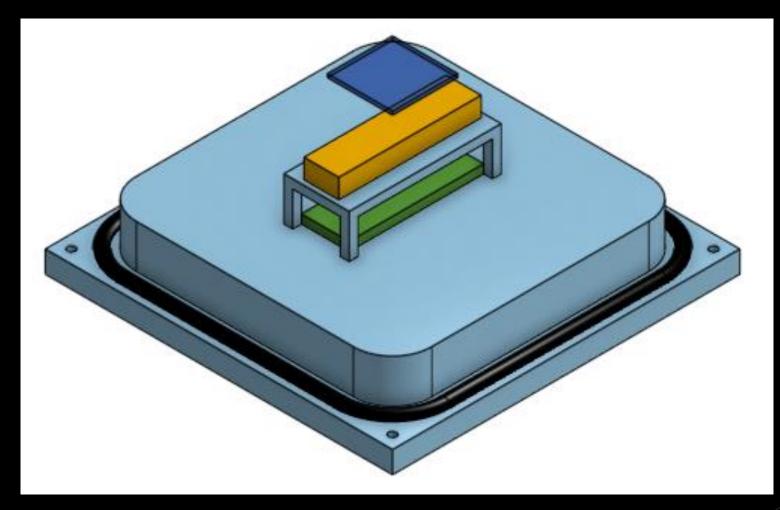



Figure 10: ISO CAD View

Tyler, Spectral Forest, F23toSp24_10

Figure 11: Bottom ISO CAD View

Concept Evaluation: CAD

Tyler, Spectral Forest, F23toSp24_10

Figure 12: Internal CAD View

10/10/2023

Schedule - Gantt Chart

On Schedule

- Designated roles for upcoming weeks
- Torrey working on website
- Derrick and Tyler on prototyping and CAD modeling
- Collaborate on Reports and Presentations
- Gantt Chart provided in next slide:

Spectral Forest Gantt Chart

Project Leader: Tyler Lerew	October 9 - December 10, 2023									
	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Weeks	(10/9-10/15)	(10/16-10/22)	(10/23-10/29)	(10/30-11/5)	(11/6-11/12)	(11/13-11/19)	(11/20-11/26)	(11/27-12/3)	(12/4-12/10)	(12/11-12/17)
Team Charter										
Presentation 1										
Presentation 2										
Report 1										
Website Check #1										
Analysis Memo										
1st Prototype Demo										
Presentation 3										
D										
Report #2										
riadour adriadout										
Final CAD and Final BOM										
and Ortations Dama										
2nd Prtotype Demo										
Project management for 486C										
Project management for 4000										
Website Check #2										
									/	
Derrick, Spectral	Derrick, Spectral Forest, F23toSp24_10 10/10/2023 17									
			Figure	- 13· Ga	ntt Cha	rt				
	Figure 13: Gantt Chart									

Derrick Doan Torrey King Tyler Lerew Everyone

BoM

- Contains potential items and costs
- Constantly adding and replacing parts
- Most of budget going into printing filament, cosine corrector and the optic

Item #	ltem	Item Description	Vendor	Quantity	Cost \$	Cost Per unit \$
1	Onyx filament	Micro carbon fiber filled nylon (12 m)	Markforged	1	96	.24/cm^3
2	Fasteners	Han-compact fixing screw	DigiKey	8	1.20	.15
3	O-ring	Fluoropolymer sealing ring	DigiKey	1	.47	.47
4	Cosine Corrector	CC-S-DIFFUSE Spectralon Diffuser	OceanInsight	1	75	75
5	Diffraction Grating Film	LAPPING FILM SIL CARBIDE 11X8.5"	DigiKey	2	5.94	2.97

Figure 14: Bill of Materials

10/10/2023

BoM cont.

6	Silicone	Chip Quik Electronic Grade Silicone	DigiKey	1	4.95	4.95
7	PCB with Components	UNIVERSAL PROTO-BOARD PCB 6CM	DigiKey	1	1.95	1.95
8	USB-C Rubber Seal	Würth Elektronik CONN COVER FOR USB-C	DigiKey	1	.63	.63
9	Conductive Silver Tape	Electrical Shielding Tape Conductive Acrylic Adhesive Silver 1/4" X 180'	DigiKey	1	3.94	3.94
10	Black Oxide Paint	Golden® Fluid Acrylics, Carbon Black <u>1</u> oz.	Michaels	1	8.49	8.49

Figure 15: Bill of Materials Cont.

Budget

- ▶ \$500 for each ME and EE teams \$1000 total, can be moved around
- Anticipated expenses:
 - Prototyping (\$50), Linear Array (\$30-\$200), final product parts (\$150-200), misc. (\$50)
 - ▶ Total according to BOM: \$198.57 or \$200
- Total expenses to date: None
- Total balance: \$500
- ▶ We will raise \$50 ourselves, which is 10% of the allotted budget
- Client working with Hamamatsu (Chips) and Chris Edwards' Space Grant Consortium (>\$5K)

Thank you!

Questions?

References

- [1] R. Cahuantzi and A. Buckley, "Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement," CORE, <u>https://core.ac.uk/download/pdf/96767912.pdf</u> (accessed Oct. 8, 2023).
- [2] "Golden® fluid acrylics, 1oz.," Michaels, <u>https://www.michaels.com/product</u> (accessed Oct. 8, 2023).
- [3] "ALTC-1 bertech | tapes, adhesives, materials," DigiKey, <u>https://www.digikey.com/en/products/detail/bertech/ALTC-1/14670724</u> (accessed Oct. 8, 2023).
- [4] "726144001 Würth Elektronik | Connectors, interconnects," DigiKey, <u>https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/726144001/7244571</u> (accessed Oct. 8, 2023).
- [5] "5588 Adafruit Industries LLC | Prototyping, fabrication products," DigiKey, <u>https://www.digikey.com/en/products/detail/adafruit-industries-llc/5588/16719270</u> (accessed Oct. 8, 2023).
- [6] "EGS10C-20G Chip Quik Inc. | Tapes, adhesives, materials," DigiKey, <u>https://www.digikey.com/en/products/detail/chip-quik-inc/EGS10C-20G/10059587</u> (accessed Oct. 8, 2023).
- [7] "15mic 3M661X sheet 8.5X11" 3M | tools," DigiKey, <u>https://www.digikey.com/en/products/detail/3m/15MIC-3M661X-SHEET-8-5X11/3083649</u> (accessed Oct. 8, 2023).
- [8] "8113306 Altech Corporation | Cables, wires management |," DigiKey, <u>https://www.digikey.com/en/products/detail/altech-corporation/8113306/9378612</u> (accessed Oct. 8, 2023).
- [9] "09120009921 harting | connectors, interconnects," DigiKey, <u>https://www.digikey.com/en/products/detail/harting/09120009921/4335127</u> (accessed Oct. 8, 2023).
- [10] "CC-S-Diffuse spectralon diffuser," Oceaninsight, <u>https://www.oceaninsight.com/products/sampling-accessories/free-space-optics/cosin correctors/cc-s-diffuse/?qty=1</u> (accessed Oct. 8, 2023).
- [11] "Onyx composite 3D printing material," Markforged, <u>https://markforged.com/materials/plastics/onyx</u> (accessed Oct. 8, 2023).

References

- [12] "Aurelia X4 Standard," Aurelia Aerospace, <u>https://aurelia-aerospace.com/product/aurelia-x4-standard/</u>.
- [13] "Carr," McMaster, <u>https://www.mcmaster.com/products/~/environment-1~outdoor/?s=https%3A%2F%2Fwww.mcmaster.com%2Fproducts%2Fbreather-vents%2Fsnap-in-breather-vents</u>.
- [14] PTFE Spectral absorption, <u>https://duckduckgo.com/?q=PTFE%2Bspectral%2Babsorption&atb=v315-1&iax=images&ia=images</u>.
- [15] B. Hill, "The benefits of fused silica & Quartz," Esco Optics, Inc., <u>https://escooptics.com/blogs/news/the-benefits-of-fused-silica-quartz</u>.